Orbital angular momentum (OAM) mode division multiplexing (MDM) systems can support large-capacity and high-speed rate information transmission, in which the OAM mode conversion devices play an important role. In this paper, the mode conversion principle of magneto-optical fiber-based long-period grating (MOF-LPG) is analyzed for further developing new magneto-optical (MO) OAM mode converters, including three types of CP01 to OAM±1,1, OAM±1,1 to OAM±2,1, and OAM±1,1 to CP02. It is shown that the magnetic tunability of the mode converters through the propagation constants of the eigenmodes is useful for compensating for process errors and increasing the operating wavelength range. The implementation of MOF-LPGs is also discussed from the aspect of the prospective experiments.