Three scenarios of high gain bow-tie based antenna array systems are introduced and investigated in this paper. The proposed designs are intended for integration as Tx/Rx antennas in C-band communication systems. Wide operating bandwidth and consistent radiation characteristics over the frequency range from 4 GHz to 5 GHz are defined for the three configurations. A two-stage Wilkinson power divider provides the feed mechanism for the proposed array. The initial structure has four radiating elements, each incorporating seven bow-tie dipoles arranged in a printed Log-Periodic Directional Array (PLPDA) configuration. The gain of the second and third designs is improved by adding resonators in front of the array elements. Furthermore, the second design features triangular-shaped resonators, while the third design employs H-shaped resonators. The designs are simulated and optimized using HFSS and CSTMWS software, and subsequently, they are fabricated using the photolithography technique. The initial design demonstrates an experimental bandwidth from 3.7 GHz to 5.1 GHz and achieves a measured gain of 13.8 dBi at 4.7 GHz. The second and third configurations operate in the frequency bands of 4.3 GHz to 5.3 GHz and 3.7 GHz to 5 GHz, respectively, exhibiting measured gains of 14.1 dBi and 15 dBi. The overall dimensions of the proposed arrays are kept within reasonable limits, with the first array being 2.51λ × 2.74λ, the second being 2.09λ × 2.82λ, and the third being 2.51λ × 2.97λ. The three array designs can be considered as good candidates for C-band communication applications.