Immunoglobulin G (IgG) has been shown to protect graft rejection after transplantation, whereas the molecular mechanism of IgG in promoting graft acceptance has not been well established. In this study, we tested the effectiveness of IgG in preventing rejection of transplanted skin graft in an immunologically potent rat model, and studied the mechanism of this protection. We found that systemic or local administration of IgG significantly prolonged the survival of skin grafts with the immune tolerance induced by IgG and subcutaneous local injection of 1mg IgG to adult SD rat yielded the longest survival of skin grafts from 5.8 to 17.3 days. We also found that IgG reduced the number of pro-inflammatory cells especially lymphocytes, neutrophils and basophils, increased the seral levels of anti-inflammatory factors including IL-10 and IL-4, and activated CD4+CD25+Foxp3+ regulatory T cells, unveiling the mechanisms of this protective effect. These findings provide new insight to support clinical application of IgG in treating transplantation.