The majority of daily travel demands concentrate at particular time-periods, which causes the difficulties in the travel demand analysis and the corresponding benefit estimation. Thus, it is necessary to consider time-specific traffic characteristics to yield more reliable results. Traditionally, naïve, heuristic, and statistical approaches have been applied to address the peak-hour ratio. In this study, a hybrid clustering model which is one of the statistical methods is applied to calculate the peak-hour ratio and its duration. The 2009 national 24-hour traffic data provided by the Korea institute of Construction Technology are used. The analysis is conducted dividing vehicle types into passenger cars and trucks. For the verification for the usefulness of the methodology, the toll collection system data by the Korea Express Corporation are collected. The result of the research shows lower errors during the off-peak hours and night times and increasing error ratios as the travel distance increases. Since the method proposed can reduce the arbitrariness of analysts and can accommodate the statistical significance test, the model could be considered as a more robust and stable methodology. It is hoped that the result of this paper could contribute to the enhancement of the reliability for the travel demand analysis.