2021
DOI: 10.1007/s40313-020-00684-8
|View full text |Cite
|
Sign up to set email alerts
|

Analysis of Hybrid Fuzzy Logic Control Based PID Through the Filter for Frequency Regulation of Electrical Power System with Real-Time Simulation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 13 publications
(7 citation statements)
references
References 41 publications
0
6
0
1
Order By: Relevance
“…The authors of [136] describe the combination of an interval type-2 FLC (two inputs and two outputs), a PI controller, and a dynamic selector switch to build a hybrid control system that decreases frequency ripples (maximum overshoot (MO) 0.1), contrary to type-1 fuzzy + PI (MO-0.51) and PI control (MO-0.56). The authors of [75,140] use optimization algorithms (TLBO-teaching learning-based optimization; and ABC-artificial bee colony) to adapt the parameters of the controllers. The researchers prove in [75] that their TLBO better tunes the proposed fuzzy-PID through a filter controller than a GA (ITAE = 2.74) and other methods from the literature (fuzzy PD-PI-IATE = 0.17), as the proposed method gave the lowest error (ITAE = 0.0976).…”
Section: Discussionmentioning
confidence: 99%
See 3 more Smart Citations
“…The authors of [136] describe the combination of an interval type-2 FLC (two inputs and two outputs), a PI controller, and a dynamic selector switch to build a hybrid control system that decreases frequency ripples (maximum overshoot (MO) 0.1), contrary to type-1 fuzzy + PI (MO-0.51) and PI control (MO-0.56). The authors of [75,140] use optimization algorithms (TLBO-teaching learning-based optimization; and ABC-artificial bee colony) to adapt the parameters of the controllers. The researchers prove in [75] that their TLBO better tunes the proposed fuzzy-PID through a filter controller than a GA (ITAE = 2.74) and other methods from the literature (fuzzy PD-PI-IATE = 0.17), as the proposed method gave the lowest error (ITAE = 0.0976).…”
Section: Discussionmentioning
confidence: 99%
“…The authors of [75,140] use optimization algorithms (TLBO-teaching learning-based optimization; and ABC-artificial bee colony) to adapt the parameters of the controllers. The researchers prove in [75] that their TLBO better tunes the proposed fuzzy-PID through a filter controller than a GA (ITAE = 2.74) and other methods from the literature (fuzzy PD-PI-IATE = 0.17), as the proposed method gave the lowest error (ITAE = 0.0976). The ABC algorithm tunes the two FLCs used in [140] better than PSO (particle swam optimization), as the ISE is 3.75 for ABC-FLCs and 4.25 for PSO-FLCs, and the PI is 30.13.…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…Klasik PI ve PID kontrolörlerin kazançlarının belirlenmesi amacıyla, bakteri arama algoritması (BAA) [3], genetik algoritma (GA) [4], karga arama algoritması (KAA) [5], ateşböceği algoritması (ABA) [4,6], denge algoritması (DA) [7], balina optimizasyonu (BA) [8], parçacık sürü optimizasyonu (PSO) [9,10], gri kurt optimizasyonu (GKO) [11], Jaya algoritması [12,13], yıldırım flaş algoritması (YFA) [14], emperyalist rekabet algoritması (EKA) [15], aşırı nüfus optimizasyonu (ANO) [16] gibi sezgisel yöntemler kullanılmıştır. Klasik kontrolörlerin yanı sıra alan kontrol hatasını (AKH) azaltmak amacıyla kesir dereceli (FO)PID [17,18], TIDN [5], I -TD [19], IPD -(1 + I) [20], bulanık mantık [21,22] gibi kontrolör çeşitleri kullanılmıştır. Abd-Elazim ve Ali tarafından yapılan çalışmada [4] FV ve termal santralin bulunduğu bir güç sisteminde ateşböceği algoritması (ABA) ile PI kontrolör parametrelerinin belirlenmesi amaçlanmıştır.…”
Section: Giriş (Introduction)unclassified