This contribution provides experimental evidence for the two-wave with diffuse power (TWDP) fading model. We have conducted two indoor millimetre wave measurement campaigns with directive horn antennas at both link ends. One horn antenna is mounted in a corner of our laboratory, while the other is steerable and scans azimuth and elevation. Our first measurement campaign is based on scalar network analysis with 7 GHz of bandwidth. Our second measurement campaign obtains magnitude and phase information, additionally sampled directionally at several positions in space. We apply Akaike's information criterion to decide whether Rician fading sufficiently explains the data or the generalized TWDP fading model is necessary. Our results indicate that the TWDP fading hypothesis is favoured over Rician fading in situations where the steerable antenna is pointing towards reflecting objects or is slightly misaligned at line-ofsight. We demonstrate TWDP fading in several different domains, namely, frequency, space, and time.few with dielectric lenses [21][22][23]. When the link-quality depends so much on the achieved beam-forming gain, antennas must be considered as part of the wireless channel again. Small-scale fading is then influenced by the antenna.According to Durgin [24, p. 137], "The use of directive antennas or arrays at a receiver, for example, amplifies several of the strongest multipath waves that arrive in one particular direction while attenuating the remaining waves. This effectively increases the ratio of specular to nonspecular received power, turning a Rayleigh or Rician fading channel into a TWDP fading channel." The mentioned two-wave with diffuse power (TWDP) fading channel describes this spatial filtering effect by two non-fluctuating receive signals together with many smaller diffuse components.