Range-extended Electric Vehicles (REVs) have become popular due to their lack of emissions while driving in urban areas, and the elimination of range anxiety when traveling long distances with a combustion engine as the power source. The fuel consumption performance of REVs depends greatly on the energy management strategy (EMS). This article proposes a practical energy management solution for REVs based on an Adaptive Equivalent Fuel Consumption Minimization Strategy (A-ECMS), wherein the equivalent factor is dynamically optimized by the battery’s State of Charge (SoC) and traffic information provided by Intelligent Transportation Systems (ITS). Furthermore, a penalty function is incorporated with the A-ECMS strategy to achieve the quasi-optimal start–stop control of the range extender. The penalty function is designed based on more precise vehicle velocity forecasting through a nonlinear autoregressive network with exogeneous input (NARX). A model of the studied REV is established in the AVL Cruise environment and the proposed energy management strategy is set up in Matlab/Simulink. Lastly, the performance of the proposed strategy is evaluated over multiple Worldwide Light-duty Test Cycles (WLTC) and real-world driving cycles through model simulation. The simulation conditions are preset such that the range extender must be switched on to finish the planned route. Compared with the basic Charge-Depleting and Charge-Sustaining (CD-CS) strategy, the proposed A-ECMS strategy achieves a fuel-consumption benefit of up to 9%. With the implementation of range extender start–stop optimization, which is based on velocity forecasting, the fuel saving rate can be further improved by 6.7% to 18.2% compared to the base A-ECMS. The proposed strategy is energy efficient, with a simple structure, and it is intended to be implemented on the studied vehicle, which will be available on the market at the end of October 2022.