2019
DOI: 10.5815/ijmecs.2019.11.04
|View full text |Cite
|
Sign up to set email alerts
|

Analysis of Indonesia Politics Polarization before 2019 President Election Using Sentiment Analysis and Social Network Analysis

Abstract: The development of the Internet in Indonesia is quite rapid, it is marked by the increasing use of social networks, especially Twitter. Not only to share status or stories, Twitter has become become a means of promotion and campaign for elections. The Twitter data can be used to find out the political polarization in Indonesia that is needed in the 2019 presidential election. The method used in this research is sentiment analysis using naï ve bayes classifier and social network analysis using the calculation o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
4

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 18 publications
(9 citation statements)
references
References 5 publications
0
5
0
4
Order By: Relevance
“…Many works on social polarization use exploratory analyzes combining metrics from the graph theory with interpretations provided by Natural Language Processing (NLP) tools like sentiment analysis based on Naïves Bayes [2,20] or sentence embedding models based on Retweet-BERT [22]. These approaches best capture the semantics of discussions but require heavy involvement from the analyst, especially during the preprocessing step.…”
Section: Related Workmentioning
confidence: 99%
“…Many works on social polarization use exploratory analyzes combining metrics from the graph theory with interpretations provided by Natural Language Processing (NLP) tools like sentiment analysis based on Naïves Bayes [2,20] or sentence embedding models based on Retweet-BERT [22]. These approaches best capture the semantics of discussions but require heavy involvement from the analyst, especially during the preprocessing step.…”
Section: Related Workmentioning
confidence: 99%
“…Klasifikasi SVM bertugas mencari hyperplane terbaik guna memisahkan kelas bersentimen positif (+1) dan kelas bersentimen negatif (-1) [11]. Penelitian terkait SNA dan Sentiment Analysis sudah banyak dilakukan, penelitian dengan judul Analysis of Indonesia Politics Polarization before 2019 President Election Using Sentiment Analysis and Social Network Analysis menunjukan bahwa penelitian yang dilakukan untuk mengklasifikasikan sentimen serta mengevaluasi dengan memodelkan penyebaran informasi yang terjadi di jejaring sosial Twitter [12]. Penelitian lain dengan judul Ekstraksi Knowledge Tentang Penyebaran #RATNAMILIKSIAPA Pada Jejaring Sosial (Twitter) Menggunakan Social Network Analysis (SNA) dilakukan untuk menemukan aktor-aktor yang yang berpengaruh dalam jaringan terhadap kelompok-kelompok yang terbentuk.…”
Section: Pendahuluanunclassified
“…Oleh karena itu, individu harus gunakan unit sosial dasar. Masyarakat (atom sosial) terdiri dari individu dan hubungan sosial, ekonomi, atau budaya dan diskusi menjadi kelompok dan akhirnya terdiri dari kelompok yang saling terkait dijelaskan dalam sosiogram (struktur hubungan antar kelompok) [6]. Terdapat lima properti jaringan dalam jejaring sosial, antara lain : Tabel 1.…”
Section: Latar Belakangunclassified