In this paper, a variant of the manufacturing technology of the disk blank for the segment liner of the shape charge is proposed. The charges are used to test the anti-meteorite stability of spacecraft. The proposed method makes it possible to form a blank in which, as its thickness decreases from the center to the periphery, a periodic profile variable in thickness is formed simultaneously in the circumferential direction. The disk metal blank is fixed in a three-cam chuck and the end face of the disk is cut with a decrease in thickness along the generatrix from the center to the periphery. Under the action of fastening forces, the disk blank is deformed and after processing the thickness in the cross section has a triangular periodic profile. Experiments on processing of disk preparations at various efforts of machine device are carried out. The dependences of the disc thickness on the fastening force in the device are obtained. After harmonic analysis of the thickness of the cross section, the values of the amplitudes of harmonics of different thickness in the circumferential direction at different distances from the center of the disk blank were determined. An increase in the fastening force leads to an increase in the amplitude of the third harmonic of the part thickness. It is shown that the change in the amplitudes of the first and second harmonics of different thickness is insignificant, and the amplitude of the third harmonic increases from the center to the periphery, which is caused by a decrease in the stiffness of the workpiece in the peripheral region.