This paper presents a comprehensive study of the metallurgical challenges of welding dissimilar metals. It also describes the important factors in dissimilar welding which need to be considered for automotive applications. It further investigates effective approaches to overcome these present challenges. Steels, aluminum alloys, and magnesium alloys are widely used metals in car bodies. However, it is difficult to weld these dissimilar metals and achieve good joint quality, due to their inherent disparate properties. The formation of brittle, crack sensitive and corrosion susceptible intermetallic phases is the main obstacle to dissimilar weld quality. Various approaches have been attempted by many researchers to enhance the performance of dissimilar welds. The most notable efforts include the application of interlayers, cover plate, least heat input, a combination of welding and mechanical joining, and alloying elements of filler metals. Based on considerations of joint performance, production cost and time, present industry infrastructure, and so on, the most effective and feasible approaches were identified which required the least amount of heat input, and the appropriate filler metal alloying elements.