Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Northern Marmara Motorway is a project that aims to alleviate the heavy traffic congestion in the provinces of İstanbul, Tekirdağ, Kocaeli and Adapazarı. Within the 5th section bounded by “the Motorway Port Connection Road” and “İzmit Intersection”, mass movements of slide (Y1, Y2) and flow (Y3) types were observed along the route. This study investigated the causes of mass movements in the Korucu Formation, which consists of sandstone and shale alternation. It also evaluated the support systems to prevent these movements. The analysis considered project criteria, both static and dynamic conditions, types of mass movements and triggering factors. The study identified a combination of factors, including the water table and surface waters, which lead to progressive weathering and mass movement. Stability analyses were conducted for specific right-cut slope sections. These analyses included assessments of soil structure, soil–rock mechanics, engineering geology and geotechnics, as well as examination of field and laboratory test results. These analyses aimed to comprehensively investigate and understand the factors influencing the occurrence of mass movements, particularly for km: 170 + 300–170 + 400, km: 170 + 640 and km: 175 + 297–175 + 463. At Y1, pile retaining walls are proposed using Slide2 software to reduce the slope angle from 22° to 17°. At Y2, a translational landslide occurred with recommendations for the adjustment of the slope angle and protective measures considering the disturbance factors (D = 0.3 and D = 0.5). Y3 was a flow-type movement that required protection of the slope with riprap due to the different geological conditions and disturbance factors. This study underlines the need for a comprehensive geological analysis and structural measures to ensure safety in these areas.
The Northern Marmara Motorway is a project that aims to alleviate the heavy traffic congestion in the provinces of İstanbul, Tekirdağ, Kocaeli and Adapazarı. Within the 5th section bounded by “the Motorway Port Connection Road” and “İzmit Intersection”, mass movements of slide (Y1, Y2) and flow (Y3) types were observed along the route. This study investigated the causes of mass movements in the Korucu Formation, which consists of sandstone and shale alternation. It also evaluated the support systems to prevent these movements. The analysis considered project criteria, both static and dynamic conditions, types of mass movements and triggering factors. The study identified a combination of factors, including the water table and surface waters, which lead to progressive weathering and mass movement. Stability analyses were conducted for specific right-cut slope sections. These analyses included assessments of soil structure, soil–rock mechanics, engineering geology and geotechnics, as well as examination of field and laboratory test results. These analyses aimed to comprehensively investigate and understand the factors influencing the occurrence of mass movements, particularly for km: 170 + 300–170 + 400, km: 170 + 640 and km: 175 + 297–175 + 463. At Y1, pile retaining walls are proposed using Slide2 software to reduce the slope angle from 22° to 17°. At Y2, a translational landslide occurred with recommendations for the adjustment of the slope angle and protective measures considering the disturbance factors (D = 0.3 and D = 0.5). Y3 was a flow-type movement that required protection of the slope with riprap due to the different geological conditions and disturbance factors. This study underlines the need for a comprehensive geological analysis and structural measures to ensure safety in these areas.
Northern Marmara Motorway is a project planned to reduce the heavy traffic load around İstanbul, Tekirdağ, Kocaeli and Adapazarı provinces. In the Kurtköy-Akyazı section of the Northern Marmara Motorway, within the 5th section, bordered by “the Motorway Port Connection Road” and “İzmit Junction”, flow and slide-type mass movements were observed along the route. Possible causes of these mass movements occurred in the Çaycuma Formation which is sandstone-shale alternation, and the support system to stop the movements were evaluated within the scope of the study. The existing project criteria were analysed for the static and dynamic conditions, types of mass movements and the factors causing these mass movements were determined, and the slope stabilization applications suggested. The study area was additionally evaluated in terms of hydrogeological characteristics. Therefore, a meteorological water budget for the study area has been calculated by the Penman Method. Additionally, the water budget data was evaluated in terms of the mechanism that creates the mass movement, the environmental properties and the water relationships. Stability analyses were run in terms of soil structure, soil-rock mechanics, engineering geology, geotechnical engineering, and field and laboratory test results for the mass movements that took place in the right cut slopes between KM: 170 + 300 − 170 + 400, KM: 170 + 640 and KM: 175 + 297 − 175 + 463 of the 5th section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.