2019
DOI: 10.1088/1755-1315/280/1/012005
|View full text |Cite
|
Sign up to set email alerts
|

Analysis of Landslide Susceptibility Zone using Frequency Ratio and Logistic Regression Method in Hambalang, Citeureup District, Bogor Regency, West Java Province

Abstract: Hambalang area is one of the regions susceptible to landslide events. This is due to unstable geological conditions and high rainfall. Administratively, research area included in Citeureup District, Bogor Regency, West Java Province. Astronomically, research area is located at the coordinates 106°51’30” - 106°53’30” East Longitude and 06°32’ - 06°34’ South Latitude. This study aims to determine the geological conditions of the study area and conduct susceptibility zoning in the Hambalang area using the method … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
3
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 8 publications
(5 citation statements)
references
References 4 publications
0
4
0
1
Order By: Relevance
“…Tindakan yang salah akan mempengaruhi kondisi dari infrastruktur yang dibangun diatasnya. Karena parameter yang mempengaruhi terdiri dari dua parameter yaitu litologi dan penggunaan lahan (Hidayat, et al, 2019). Oleh karena itu, perlu diketahui informasi struktur bawah permukaan.…”
Section: Pendahuluanunclassified
“…Tindakan yang salah akan mempengaruhi kondisi dari infrastruktur yang dibangun diatasnya. Karena parameter yang mempengaruhi terdiri dari dua parameter yaitu litologi dan penggunaan lahan (Hidayat, et al, 2019). Oleh karena itu, perlu diketahui informasi struktur bawah permukaan.…”
Section: Pendahuluanunclassified
“…However, there has been an increasing global interest in designing, developing, and deploying landslide early warning systems as a solution to disaster risk reduction (Guzzetti et al 2020;Pecoraro et al 2019). New geographical areas are being explored for the deployment of landslide early warning systems utilizing the application of geospatial technology and Web-GIS in order to save human lives by utilizing precipitation measurement as a key indicator for a regional level warning (Ahmed et al 2020;Hidayat et al 2019).…”
Section: Literature Reviewmentioning
confidence: 99%
“…Landslide susceptibility models based on the bivariate frequency and weights of evidence models [34] and FR and information value (IV) models [1,10,35], machine learning models [36,37], and deep learning models [38,39] have been developed. With the development of Geographic Information System (GIS), other researchers have used bivariate FR and multivariate logistic regression models [40][41][42][43][44] to help in the calculation and visualization of the cumulative effects of conditioning factors on landslides.…”
Section: Introductionmentioning
confidence: 99%