The
development of high-yield, metal–organic framework (MOF)-based
water harvesters in arid areas remains challenging due to the absence
of effective strategies for enhancing water sorption capacity and
kinetics. Herein, we presented a novel strategy for in situ fabrication
of calcium chloride (CaCl2) decorated MOF-derived porous
sorbents (PCC-42) through pyrolysis Ca-MOF and subsequently hydrochloric
acid (HCl) vapor treatment process. The resulting PCC-42 sorbents
exhibited a high water adsorption capacity of 3.04 g g–1 at 100% relative humidity (RH), outstanding photothermal performance,
and rapid water uptake-release kinetics, surpassing most reported
MOFs adsorbents. At 20, 30, 40, and 50% RH, PCC-42 demonstrated water
uptake capacity of 0.45, 0.59, 0.76, and 0.9 g g–1, which represented an increase of 421 and 940% (at 20% RH) and 333
and 351% (at 30% RH) compared to Ca-MOF and CaCl2·2H2O, respectively. Approximately 80% of the adsorbed water in
PCC-42 could be released under one sun within 50 min. Indoor water
harvesting experiments demonstrated that PCC-42 is a promising adsorbent
for various humidity environments. Additionally, outdoor solar-driven
atmospheric water harvesting (AWH) tests revealed a high daily water
production of 1.13 L/kgadsorbent under typical arid conditions
(30–60% RH). The proposed strategy helps the design of high-performance
adsorbents for solar-driven AWH in arid environments.