Nabbaren nepheline syenite, a silica-deficient intrusive rock with low Fe content, was the industrial mineral deposit study case in this study. The quality of industrial mineral products are generally based on their bulk chemistry, which are directly related to their modal mineralogy and mineral chemistry; however, these are costly and time-consuming to determine. A geometallurgical-based methodology, known as element-to-mineral conversion (EMC), was applied to estimate its modal mineralogy based on its given bulk and mineral chemistry. EMC is a convenient and cost-effective technique, which can be used to quickly estimate modal mineralogy. Two EMC methodologies were applied: one least square based, LS-XRD, and one regression based, R-XRD. Additionally, average and specific mineral chemistries were used during estimations. The R-XRD method, a method not yet used for EMC purposes, gave better modal mineralogy estimations than LS-XRD. Considering the restrictions in the method, R-XRD shows potential for improvement and implementation at operational scale, making it a valuable geometallurgical tool for increasing resource performance, easing decision-taking processes, and reducing risks. The use of different mineral chemistries did not influence the modal mineralogy estimation, unlike the method used for it.