Abstract--In this paper, we present a combination of sequential trained radial basis function networks and fuzzy techniques to enhance the variable structure controllers dedicated to robotics systems. In this aim, four RBFs networks were used to estimate the model based part parameters (Inertia, Centrifugal and Coriolis, Gravity and Friction matrices) of a variable structure controller so to respond to model variation and disturbances, a sequential online training algorithm based on Growing-Pruning "GAP" strategy and Kalman filter was implemented. To eliminate the chattering effect, the corrective control of the VS control was computed by a fuzzy controller. Simulations are carried out to control three degrees of freedom SCARA robot manipulator where the obtained results show good disturbance rejection and chattering elimination.