Understanding the response of date palm (Phoenix dactylifera L.) cultivars to salt stress is essential for the sustainable management of phoeniculture in Tafilalet, Morocco. It offers a promising avenue for addressing the challenges presented by the increasing salinity of irrigation waters, especially because farmers in these regions often lack the necessary knowledge and resources to make informed decisions regarding cultivar selection. This study addresses this issue by investigating the performance of the most relied on cultivars by farmers in Tafilalet, namely Mejhoul, Boufeggous, Nejda, and Bouskri. These cultivars were exposed to a sodium chloride treatment of 154 mM, and their performances were evaluated over a three-month period. We examined the growth rate, photosynthesis-related parameters, pigments, water status in plants, and biochemical compounds associated with oxidative stress, osmotic stress, and ionic stress. Principle component analysis (PCA) effectively categorized the cultivars into two distinct groups: salt-sensitive (Mejhoul and Nejda) and salt-tolerant (Boufeggous and Bouskri). These findings provide valuable insights for farmers, highlighting the advantages of cultivating Boufeggous and Bouskri cultivars due to their superior adaptation to salt conditions. These cultivars exhibited moderate decrease in shoot growth (25%), enhanced catalase activity, a smaller increase in anthocyanin content, and greater enhancement in organic osmolytes compared with salt-sensitive cultivars like Mejhoul (experiencing an 87% reduction in shoot elongation) and Nejda (exhibiting the highest reduction in leaf area). Furthermore, the Na+/K+ ratio was positively influenced by salt stress, with Mejhoul and Nejda recording the highest values, suggesting its potential as an indicator of salt stress sensitivity in date palms.