Transmission accuracy is one of the most important parameters in ball screw mechanism (BSM), however, very few researches can be found on the transmission accuracy modelling for BSM. Therefore, this paper proposes a novel model to predicate the transmission accuracy of BSM considering the manufacturing errors, installation errors, as well as the errors due to the contact deformation under different loading status. Meanwhile, the transmission accuracy of a typical BSM under five different preloading levels is measured on the basis of a transmission accuracy measuring system. The experimental results show that the difference is 21.6% under no preload condition, and is less than 11% under different preload conditions, largely owing to the uneven distribution of clearance can increase the travel deviation. Further analysis shows that the eccentricity error, which belongs to the installation error, is the most important factor, mainly generating the periodic fluctuation and amplitude of the transmission error. More importantly, the travel deviation increases with the increase of the preload, which indicates that the transmission accuracy of the BSM deteriorates when the load is increased.