Rationale
Stable carbon (δ13C) and nitrogen (δ15N) isotope compositions of bone and dentine collagen extracted from subfossil specimens of extinct and extant mammalian species have been widely used to study the paleoecology of past populations. Due to possible systematic differences in stable isotope values between bone and dentine, dentine values can be transformed into bone-collagen equivalent using a correction factor. This approach has been applied to terrestrial species, but correction factors specifically for marine mammals are lacking. Here, we provide correction factors to transform dentine δ13C and δ15N values into bone-collagen equivalent for two toothed whale sister species: narwhal and beluga.
Methods
We sampled bone and tooth dentine from the skulls of 11 narwhals and 26 belugas. In narwhals, dentine was sampled from tusk and embedded tooth; in beluga, dentine was sampled from tooth. δ13C and δ15N were measured using an elemental analyzer coupled to a continuous flow isotope ratio mass spectrometer. Intraindividual bone and dentine isotopic compositions were used to calculate correction factors for each species, and to translate dentine isotopic values into bone-collagen equivalent.
Results
Our analysis revealed differences in δ13C and δ15N between bone and dentine. In narwhals, we found (i) lower average δ13C in bone compared with dentine from tusk and embedded tooth; (ii) no difference in dentine δ13C between tusk and embedded tooth; (iii) lower average δ15N in bone compared with dentine, with the highest values found in embedded tooth. For belugas, we also detected lower δ13C and δ15N in bone compared with tooth dentine.
Conclusions
Based on our analysis, we provide bone/dentine correction factors for narwhals (both at species and population level), and for belugas. The correction factors, when applied to dentine δ13C and δ15N values, enable the combined analysis of stable isotope data from bone and dentine.