2018
DOI: 10.1116/1.5048061
|View full text |Cite
|
Sign up to set email alerts
|

Analysis of negative electron affinity InGaN photocathode by temperature-programed desorption method

Abstract: A III–V semiconductor with a few monolayers of alkali metals (e.g., Cs) forms a negative electron affinity (NEA) surface, for which the vacuum level lies below the conduction band minimum of the base semiconductor. The photocathodes that form an NEA surface (NEA photocathodes) have various advantages, such as low emittance, a large current, high spin polarization, and ultrashort pulsed operation. The NEA-InGaN photocathode, which is sensitive to blue light, has been studied as a material for the next-generatio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 18 publications
0
1
0
Order By: Relevance
“…Using III-V compound semiconductor substrates, such as GaAs, with a negative electron affinity (NEA) surface is useful to generate pulsed electrons with small energy dispersion with high emittance. However, it is difficult to handle because the usable vacuum environment is severe, and an extremely high vacuum is required to extend the lifetime [6][7][8][9][10][11].…”
Section: Introductionmentioning
confidence: 99%
“…Using III-V compound semiconductor substrates, such as GaAs, with a negative electron affinity (NEA) surface is useful to generate pulsed electrons with small energy dispersion with high emittance. However, it is difficult to handle because the usable vacuum environment is severe, and an extremely high vacuum is required to extend the lifetime [6][7][8][9][10][11].…”
Section: Introductionmentioning
confidence: 99%