Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose:Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods:The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDI vol =4,8,12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo R , GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d . Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than FBP (and vice versa); the value of this transitional contrast highly depended on the dose level. (3) The PSFs of MBIR could be approximated as Gaussian functions with reasonably good accuracy. (4) The z resolution of MBIR showed similar contrast and dose dependence. (5) Noise standard deviation assessed on the edges of objects demonstrated a trade-off with spatial resolution in MBIR. (5) When both spatial resolution and image noise were considered using the CHO analysis, MBIR led to significant improvement in the overall CT image quality for both high and low contrast detection tasks at both standard and low dose levels. Conclusions: Due to the intrinsic nonlinearity of the MBIR method, many well-known CT spatial resolution and noise properties have been modified. In particular, dose dependence and contrast dependence have been introduced to the spatial resolution of CT images by MBIR. The method has also introduced some novel noise-resolution trade-off not seen in traditional CT images. While the benefits of MBIR regarding the overall image quality, as demonstrated in ...
Purpose:Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods:The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDI vol =4,8,12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo R , GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d . Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than FBP (and vice versa); the value of this transitional contrast highly depended on the dose level. (3) The PSFs of MBIR could be approximated as Gaussian functions with reasonably good accuracy. (4) The z resolution of MBIR showed similar contrast and dose dependence. (5) Noise standard deviation assessed on the edges of objects demonstrated a trade-off with spatial resolution in MBIR. (5) When both spatial resolution and image noise were considered using the CHO analysis, MBIR led to significant improvement in the overall CT image quality for both high and low contrast detection tasks at both standard and low dose levels. Conclusions: Due to the intrinsic nonlinearity of the MBIR method, many well-known CT spatial resolution and noise properties have been modified. In particular, dose dependence and contrast dependence have been introduced to the spatial resolution of CT images by MBIR. The method has also introduced some novel noise-resolution trade-off not seen in traditional CT images. While the benefits of MBIR regarding the overall image quality, as demonstrated in ...
Purpose The increasing application of iterative reconstruction algorithms in clinical computed tomography to improve image quality and reduce radiation dose, elicits strong interest, and needs model observers to optimize CT scanning protocols objectively and efficiently. The current paradigm for evaluating imaging system performance relies on Fourier methods, which presuppose a linear, wide‐sense stationary system. Long‐range correlations introduced by iterative reconstruction algorithms may narrow the applicability of Fourier techniques. Differences in the implementation of reconstruction algorithms between manufacturers add further complexity. The present work set out to quantify the errors entailed by the use of Fourier methods, which can lead to design decisions that do not correlate with detectability. Methods To address this question, we evaluated the noise properties and the detectability index of the ideal linear observer using the spatial approach and the Fourier‐based approach. For this purpose, a homogeneous phantom was imaged on two scanners: the Revolution CT (GE Healthcare) and the Somatom Definition AS+ (Siemens Healthcare) at different exposure levels. Images were reconstructed using different strength levels of IR algorithms available on the systems considered: Adaptative Statistical Iterative Reconstruction (ASIR‐V) and Sinogram Affirmed Iterative Reconstruction (SAFIRE). Results Our findings highlight that the spatial domain estimate of the detectability index is higher than the Fourier domain estimate. This trend is found to be dependent on the specific regularization used by IR algorithms as well as the signal to be detected. The eigenanalysis of the noise covariance matrix and of its circulant approximation yields explanation about the evoked trends. In particular, this analysis suggests that the predictive power of the Fourier‐based ideal linear observer depends on the ability of each basis analyzed to be relevant to the signal to be detected. Conclusion The applicability of Fourier techniques is dependent on the specific regularization used by IR algorithms. These results argue for verifying the assumptions made when using Fourier methods since Fourier‐task‐based detectability index does not always correlate with signal detectability.
BackgroundAccurate noise power spectra (NPS) measurement in clinical X‐ray CT exams is challenging due to the need for repeated scans, which expose patients to high radiation risks. A reliable method for single CT acquisition NPS estimation is thus highly desirable.PurposeTo develop a method for estimating local NPS from a single photon counting detector‐CT (PCD‐CT) acquisition.MethodsA novel nearly statistical bias‐free estimator was constructed from the raw counts data of PCD‐CT scan to estimate the variance of sinogram projection data. An analytical algorithm is employed to reconstruct point‐wise covariance between any two image pixel/voxel locations and . A Fourier transform is applied to obtain the desired point‐wise NPS for any chosen location . The method was validated using experimental data acquired from a benchtop PCD‐CT system with various physical phantoms, and the results were compared with the conventional local NPS measurement method using repeated scans and statistical ensemble averaging.ResultsThe experimental results demonstrate that (1) the proposed method can achieve pointwise/local NPS measurement for a region of interest (ROI) located at any chosen position, accurately characterizing the NPS with spatial structures resulting from image content heterogeneity; (2) the local NPS measured using the proposed method show a higher precision in the measured NPS compared to the conventional measurement method; (3) spatial averaging of the local NPS yields the conventional NPS for a given local ROI.ConclusionA new method was developed to enable local NPS from a single PCD‐CT acquisition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.