To divide, control, and predict the effects of the coagulation process in water treatment, a characteristic analysis of the change in particle size distribution (particle number and fractal dimension) during aided coagulation with hydrated MnO2 was performed. The results showed that the process of coagulation could be divided into three characteristic stages based on the first derivative of the particle size fractal dimension. In the primary stage, most of the microflocs aggregated to form small flocs; in the growth stage, most of the small flocs aggregated to form large flocs; and in the stable stage, some large flocs broke apart and reformed. The first derivative of the particle size fractal dimension had a good linear relationship with the coagulation time in the primary stage and growth stage, and its slope had a power function relationship with the particle number in settled water; the first derivative could thus be used to evaluate the coagulation effect. In the stable stage, the rate of change in particle size fractal dimension fluctuated along the fitted line, and the mean residual sum of squares had a linear relation with the particle number in settled water; therefore, this parameter could be used as an indicator of the coagulation effect.