The paper proposes a new real life model and the main aim is to examine the cost benefit analysis of Textile Industry model subject to different failure and repair strategies. The reliability model comprises of three units i,e Spinning machine (S), Weaving machine (W), Colouring and Finishing machine(Cf). The working principal of the model starts with spinning machine (S) where in unit S is in operative state while as weaving machine, Colouring and Finishing machine are in ideal state. Complete failure of system is observed when all three units of system i.e. S,W and Cf are in down state. Repairperson is always available to carry out the repair activities in the system in which first priority in repair is given to Colouring and Finishing machine followed by Spinning and weaving machine. The proposed model attempts to maximize the reliability of a real life system. Reliability measures such as Mean Sojourn time, Mean time to system failure, Profit analysis of system are examined to define the performance of the reliability characteristics. For concluding the study of such model, different stochastic measures are analyzed in steady state using regenerative point technique. The tables are prepared for arbitrary values of the parameters to show the performance of some important reliability measures and to check the efficiency of the model under such situations.