Localised arc filament plasma actuators are modelled with a validated technique to examine asymmetric control of a perfectly expanded round free jet to deflect its downstream trajectory. The nominal Mach and Reynolds numbers are 1.3 and 1 million, respectively. No-control, symmetrically controlled, and under-expanded jets are also simulated for comparison purposes. Parametric variation of actuation frequency and duty cycle indicate that asymmetric control can alter the trajectory, and, within the confines of the parameters investigated, the optimal forcing scheme was found to correspond to the jet's columnmode frequency and a duty cycle of approximately 60%. Increasing frequency and duty cycle beyond these values have a detrimental effect on control, which is consistent with experimental findings. Asymmetric actuation resulted in significant mixing enhancement on the actuated side, as evidenced by the increased growth rate of the non-dimensional momentum thickness. The effectiveness of control is reduced for under-expanded jet conditions.