Based on the addressability of quantum superposition and its unitary transformation, a network-compatible, unconditionally secured key distribution protocol is presented for arbitrary networking in a classical regime with potential applications of one-time-pad cryptography. The network capability is due to the addressable unitary transformation between arbitrary point-to-point connections in a network through commonly shared double transmission channels. The unconditional security is due to address-sensitive eavesdropping randomness via network authentication. The proposed protocol may offer a solid platform of unconditionally secured classical cryptography for mass-data communications in a conventional network, which would be otherwise impossible.