1. Human-induced disturbance has substantially influenced the structure and function of terrestrial ecosystems globally. However, the extent to which multiple ecosystem functions (multifunctionality) recover following anthropogenic disturbance (ecosystem recovery) remains poorly understood.2. We report on the first study examining the temporal dynamics in recovery of multifunctionality from 3 to 12 years after the commencement of rehabilitation following mining-induced disturbance, and relate this information to changes in biota. We examined changes in 57 biotic (plants, microbial) and functional (soil) attributes associated with biodiversity and ecosystem services at four open-cut coal mines in eastern Australia.
Increasing time since commencement of rehabilitation was associated withincreases in overall multifunctionality, soil microbial abundance, plant productivity, plant structure and soil stability, but not nutrient cycling, soil carbon sequestration nor soil nutrients. However, the temporal responses of individual ecosystem properties varied widely, from strongly positive (e.g. litter cover, fine and coarse frass, seed biomass, microbial and fungal biomass) to strongly negative (groundstorey foliage cover). We also show that sites with more developed biota tended to have greater ecosystem multifunctionality. Moreover, recovery of plant litter was closely associated with recovery of most microbial components, soil integrity and soil respiration. Overall, however, rehabilitated | 1633