The transmembrane, homodimeric aspartate receptor of Escherichia coli and Salmonella typhimurium controls the chemotactic response to aspartate, an attractant, by regulating the activity of a cytoplasmic histidine kinase. The cytoplasmic domain of the receptor plays a central role in both kinase regulation and sensory adaptation, although its structure and regulatory mechanisms are unknown. The present study utilizes cysteine and disulfide scanning to probe residues Leu-250 through Gln-309, a region that contains the first of two adaptive methylation segments within the cytoplasmic domain. Following the introduction of consecutive cysteine residues by scanning mutagenesis, the measurement of sulfhydryl chemical reactivities reveals an ␣-helical pattern of exposed and buried positions spanning residues 270 -309. This detected helix, termed the "first methylation helix," is strongly amphiphilic; its exposed face is highly anionic and possesses three methylation sites, while its buried face is hydrophobic. In vivo and in vitro assays of receptor function indicate that inhibitory cysteine substitutions are most prevalent on the buried face of the first methylation helix, demonstrating that this face is involved in a critical packing interaction. The buried face is further analyzed by disulfide scanning, which reveals three "lock-on" disulfides that covalently trap the receptor in its kinaseactivating state. Each of the lock-on disulfides crosslinks the buried faces of the two symmetric first methylation helices of the dimer, placing these helices in direct contact at the subunit interface. Comparative sequence analysis of 56 related receptors suggests that the identified helix is a conserved feature of this large receptor family, wherein it is likely to play a general role in adaptation and kinase regulation. Interestingly, the rapid rates and promiscuous nature of disulfide formation reactions within the scanned region reveal that the cytoplasmic domain of the full-length, membranebound receptor has a highly dynamic structure. Overall, the results demonstrate that cysteine and disulfide scanning can identify secondary structure elements and functionally important packing interfaces, even in proteins that are inaccessible to other structural methods.The aspartate receptor of Escherichia coli and Salmonella typhimurium is representative of a large family of cell-surface receptors that regulate two-component signaling pathways, which are widespread in prokaryotic and eukaryotic organisms (1-9). These receptors contain two putative transmembrane helices per subunit and, in all cases tested, form stable homodimers that signal via a transmembrane conformational change. Chimeric receptors containing the sensory domain of the aspartate receptor and the regulatory domain of another family member are functional, suggesting that members of this receptor family use a conserved mechanism of transmembrane signaling to regulate cytoplasmic histidine kinase activity (10 -12). More generally, conformational transmembrane signals ma...