The BeiDou navigation satellite system shows its potential for passive radar vessel target detection owing to its global-scale coverage. However, the restrained power budget from BeiDou satellite hampers the detection performance. To solve this limitation, this paper proposes a long-time optimized integration method to obtain an adequate signal-to-noise ratio (SNR). During the long observation time, the range migration, intricate Doppler migration, and noncoherence characteristic bring challenges to the integration processing. In this paper, first, the keystone transform is applied to correct the range walk. Then, considering the noncoherence of the entire echo, the hybrid integration strategy is adopted. To remove the Doppler migration and correct the residual range migration, the long-time integration is modeled as an optimization problem. Finally, the particle swarm optimization (PSO) algorithm is applied to solve the optimization problem, after which the target echo over the long observation time is well concentrated, providing a reliable detection performance for the BeiDou-based passive radar. Its effectiveness is shown by the simulated and experimental results.