2015
DOI: 10.1016/j.proeng.2015.11.022
|View full text |Cite
|
Sign up to set email alerts
|

Analysis of Rainfall-runoff Neuron Input Model with Artificial Neural Network for Simulation for Availability of Discharge at Bah Bolon Watershed

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
2
0
2

Year Published

2017
2017
2025
2025

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(4 citation statements)
references
References 4 publications
0
2
0
2
Order By: Relevance
“…As RNAs desenvolvidas para as seções de monitoramento de vazão da bacia do rio Piracicaba apresentaram desempenho adequado e semelhante aos obtidos por Aichouri et al (2015), Elsafi (2014), Mehr et al (2015), Okkan et al (2012), Setiono (2015), Tayyab et al (2016) e Tongal et al (2013), quando da utilização de RNAs com o mesmo objetivo, em bacias hidrográficas de diferentes países.…”
Section: Estação Carrapato (56640000)unclassified
See 1 more Smart Citation
“…As RNAs desenvolvidas para as seções de monitoramento de vazão da bacia do rio Piracicaba apresentaram desempenho adequado e semelhante aos obtidos por Aichouri et al (2015), Elsafi (2014), Mehr et al (2015), Okkan et al (2012), Setiono (2015), Tayyab et al (2016) e Tongal et al (2013), quando da utilização de RNAs com o mesmo objetivo, em bacias hidrográficas de diferentes países.…”
Section: Estação Carrapato (56640000)unclassified
“…Entre os modelos empíricos, as Redes Neurais Artificiais (RNAs) apresentam resultados promissores para a estimativa das vazões de cursos de água, como demonstrado por Aichouri et al (2015), Elsafi (2014), Meng et al (2015), Oliveira et al (2013), Sattari;Apaydin;Ozturk (2012) e Setiono (2015).…”
Section: Introductionunclassified
“…At any given spatial and temporal variations in explicit and implicit variables of watershed and precipitation characteristics, the relationship between rainfall and runoff is nonlinear and extremely complex (Kumar et al, 2019a(Kumar et al, , 2019bRezaie-Balf et al, 2017;Wu & Chau, 2011). The complex process of transformation of rainfall to runoff can be simulated through hydrologic models (Hadiani, 2015). The runoff simulation modelling methods can be broadly categorized into categories of theory-driven (conceptual) and datadriven (black box) approaches (Li et al, 2016).…”
Section: Introductionmentioning
confidence: 99%
“…Artificial Neural Network (ANN) method was used by [10] to determine the potential of the available discharge in the long term for the purpose of Micro Hydro Power (MHP).The modeling of rainfall-runoff in the watershed of Bolon in Simalungun district of North Sumatra Province. The software was developed with Scilab mathematical open source software based on ANN algorithm.…”
Section: Introductionmentioning
confidence: 99%