Renewable generation brings both new energies and significant challenges to the evolving power system. To cope with the loss of inertia caused by inertialess power electronic interfaces (PEIs), the concept of the virtual synchronous generator (VSG) has been proposed. The PEIs under VSG control could mimic the external properties of the traditional synchronous generators. Therefore, the frequency stability of the entire system could be sustained against disturbances mainly caused by demand changes. Moreover, as the parameters in the emulation control processes are adjustable rather than fixed, the flexibility could be enhanced by proper tuning. This paper presents a parameter tuning method adaptive to the load deviations. First, the concept and implementation of the VSG algorithm performing an inertia response (IR) and primary frequency responses (PFR) are introduced. Then, the simplification of the transfer function of the dynamic system of the stand-alone VSG-PEI is completed according to the distributed poles and zeros. As a result, the performance indices during the IR and PFR stages are deduced by the inverse Laplace transformation. Then, the composite influences on the performances by different parameters (including the inertia constant, the speed droop, and the load deviations) are analyzed. Based on the composite influences and the time sequences, an adaptive parameter tuning method is presented. The feasibility of the proposed method is verified by simulation.