Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Summary Conventional methods of managing gas-in-riser events are not optimal when the drilling riser is isolated from the formation by a closed subsea blowout preventer (BOP) on rigs equipped with mud gas separator (MGS), managed pressure drilling (MPD), or riser gas-handling equipment. The industry is concerned about exceeding the pressure limit of the riser and the flow capacity of the MGS and hence has not been able to reach a consensus on a circulation method for riser gas. This work is an analysis of the first-ever demonstration of the fixed-choke constant-outflow (FCCO) circulation method in synthetic-based mud (SBM) carried out in June 2022. The first-ever demonstration of the FCCO circulation method in water was performed in March 2021. The results from the water tests were discussed in IADC Gas-in-Riser/Riser Gas-Handling Subcommittee meetings, and the new fixed-choke method was named FCCO in November of 2021. The reason for using the acronym FCCO for the new method is that it allows the use of a fixed-choke opening percentage throughout the circulation period by managing the outflow and backpressure by varying only the pump rate. This work includes the comparison of the actual test results from the March 2021 FCCO tests in water with results estimated using a new model. This is followed by a discussion of the results from the June 2022 FCCO test in SBM. Nitrogen gas was injected into the bottom of an annulus 5,200-ft deep, vertical test well (9 5/8×2 7/8 in. casing/tubing) initially filled with water and instrumented with four downhole pressue and temperature gauges, and distributed fiber-optic sensors [distributed temperature sensing (DTS) and distributed acoustic sensing (DAS)] for water tests, and later filled with SBM. We started direct circulation to produce flow out of the annulus through a choke kept at a fixed open position (%) required for a preplanned applied surface backpressure (ASBP). We reduced pump rate if/as necessary to maintain this ASBP to ensure outflow rate within MGS flow capacity. We performed tests at different fixed-choke positions, different average ASBPs, and initial pump rates. We tested constant bottomhole pressure (CBHP) circulation and fixed pump rate methods also for comparison with the FCCO circulation method. The results from the FCCO tests demonstrated better control of outflow compared with the other methods. There is no need to use high ASBP. The use of a high ASBP suppressed the value of peak pressure. Installation of more than one gauge inside the riser enhances safety by allowing real-time influx detection capability, estimation of gas position, gas velocity, and gas void fraction. The FCCO method can be preplanned and easily substituted as the preferred circulation method for staying within the handling capacity of the existing MGS on the rig during gas-in-riser situations.
Summary Conventional methods of managing gas-in-riser events are not optimal when the drilling riser is isolated from the formation by a closed subsea blowout preventer (BOP) on rigs equipped with mud gas separator (MGS), managed pressure drilling (MPD), or riser gas-handling equipment. The industry is concerned about exceeding the pressure limit of the riser and the flow capacity of the MGS and hence has not been able to reach a consensus on a circulation method for riser gas. This work is an analysis of the first-ever demonstration of the fixed-choke constant-outflow (FCCO) circulation method in synthetic-based mud (SBM) carried out in June 2022. The first-ever demonstration of the FCCO circulation method in water was performed in March 2021. The results from the water tests were discussed in IADC Gas-in-Riser/Riser Gas-Handling Subcommittee meetings, and the new fixed-choke method was named FCCO in November of 2021. The reason for using the acronym FCCO for the new method is that it allows the use of a fixed-choke opening percentage throughout the circulation period by managing the outflow and backpressure by varying only the pump rate. This work includes the comparison of the actual test results from the March 2021 FCCO tests in water with results estimated using a new model. This is followed by a discussion of the results from the June 2022 FCCO test in SBM. Nitrogen gas was injected into the bottom of an annulus 5,200-ft deep, vertical test well (9 5/8×2 7/8 in. casing/tubing) initially filled with water and instrumented with four downhole pressue and temperature gauges, and distributed fiber-optic sensors [distributed temperature sensing (DTS) and distributed acoustic sensing (DAS)] for water tests, and later filled with SBM. We started direct circulation to produce flow out of the annulus through a choke kept at a fixed open position (%) required for a preplanned applied surface backpressure (ASBP). We reduced pump rate if/as necessary to maintain this ASBP to ensure outflow rate within MGS flow capacity. We performed tests at different fixed-choke positions, different average ASBPs, and initial pump rates. We tested constant bottomhole pressure (CBHP) circulation and fixed pump rate methods also for comparison with the FCCO circulation method. The results from the FCCO tests demonstrated better control of outflow compared with the other methods. There is no need to use high ASBP. The use of a high ASBP suppressed the value of peak pressure. Installation of more than one gauge inside the riser enhances safety by allowing real-time influx detection capability, estimation of gas position, gas velocity, and gas void fraction. The FCCO method can be preplanned and easily substituted as the preferred circulation method for staying within the handling capacity of the existing MGS on the rig during gas-in-riser situations.
It is challenging to optimize operation procedures that safely remove riser gas without causing equipment, personnel, or unnecessary environmental issues. This paper presents results from studies of various scenarios using a fixed-choke constant outflow (FCCO) method that will keep the choke opening constant to measure fluid outflow while circulating the riser gas out through the booster line. A commercial dynamic multiphase flow software program was used to study extreme scenarios of up to 300 bbl of gas influx in the bottom of the riser of a deepwater rig equipped with a riser gas handling system or managed pressure drilling (MPD) system drilling in 12,000 ft of water. The consequences of gas migration and free gas dissolution into both water-based and oil-based mud were studied. The initial fixed-choke opening was selected by modeling a 500-gal/min flow rate through the boost line with a choke sized to initially obtain from 150 to 200 psi surface back pressure. The pump rate was reduced to 200 gal/min or even 0 gal/min as needed to keep choke pressure; hence, the return flow rate is relatively equal to the initial target value. Other scenarios with different influx volumes and choke openings were also studied to check pressure consequences to the riser system. When using the FCCO method to manage the 300 bbl influx with water-based mud, the software calculated a maximum pressure of 580 psi on the riser top. When using oil-based mud, a maximum pressure of 1,112 psi was observed on the riser top for the same scenario. When the same situation was simply shut in (instead of being circulated using the FCCO method), there was a maximum pressure of 2,300 psi on the riser top with water-based mud, but only 1,254 psi when using oil-based mud, ignoring for the moment the benefit provided by pressure relief valves in an actual operation, which could intervene before the riser top pressure reaches 2,300 psi. The analysis of the resulting surface choke pressure and surface gas/liquid flow rate support the concept that circulation of the gas influx while adjusting pump rate to keep the flow rate constant through a choke at the fixed position (even if it means reducing the pump rate to 0 gal/min as flow is driven by gas expansion alone) would be easier to handle than by using other proposed riser gas management procedures. This paper presents the first study of riser gas handling in an oil-based mud scenario considering gas dissolution with an FCCO and provide references for International Association of Drilling Contractors (IADC) riser-gas handling guidelines and deepwater well control guidelines.
Summary Accurate estimation and prediction of gas rise velocity, length of the gas influx region, and void fraction are important for optimal gas kick removal, riser gas management, and well control planning. These parameters are also essential in monitoring and characterization of multiphase flow. However, gas dynamics in non-Newtonian fluids, such as drilling mud, which is essential for gas influx control, are poorly understood due to the inability to create full-scale annular flow conditions that approximate the conditions observed in the field. This results in a lack of understanding and poor prediction of gas kick behavior in the field. To bridge this gap, we use distributed fiber-optic sensors (DFOS) for real-time estimation of gas rise velocity, void fraction, and influx length in water and oil-based mud (OBM) at the well scale. DFOS can overcome a major limitation of downhole gauges and logging tools by enabling the in-situ monitoring of dynamic events simultaneously across the entire wellbore. This study is the first well-scale deployment of distributed acoustic sensor (DAS), distributed temperature sensor (DTS), and distributed strain sensor (DSS) for investigation of gas behavior in water and OBM. Gas void fraction, migration velocities, and gas influx lengths were analyzed across a 5,163-ft-deep wellbore for multiphase experiments conducted with nitrogen in water and nitrogen in synthetic-based mud, at similar operating conditions. An improved transient drift flux–based numerical model was developed to simulate the experimental processes and understand the gas dynamics in different wellbore fluid environments. The gas velocities, void fractions, and gas influx lengths estimated independently using DAS, DTS, and DSS showed good agreement with the simulation results, as well as the downhole gauge analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.