Abstract-This article shows how a particle smoother based system identification method can be applied for estimating the trajectory of road vehicles. As sensors, a combination of an accelerometer measuring the road surface vibrations and a magnetometer measuring magnetic disturbances mounted on the side of the road are considered. First, sensor models describing the measurements of the two sensors are introduced. It is shown that these depend on unknown, static parameters that have to be considered in the estimation. Second, the sensor models are combined with a two-dimensional constant velocity motion model. Third, the system identification algorithm is introduced which iteratively runs a Rao-Blackwellized particle smoother to estimate the vehicle trajectory followed by an expectation-maximization step to estimate the parameters. Finally, the method is applied to both simulation and measurement data. It is found that the method works well in general and some issues when real data is considered are identified as future work.