Sub-atmospheric pressure plasma slabs exhibit the feature of relatively high plasma number density and high collisional frequency between electrons and neutral gases, as well as similar thickness to the electromagnetic (EM) wavelength in communication bands. The propagation characteristics of EM waves in sub-atmospheric pressure plasma slabs are attracting much attention of the researchers due to their applications in the plasma antenna, the blackout effect during reentry, wave energy injection in the plasma, etc. In this paper, a numerical model with a one-dimensional assumption has been established and therefore, it is used for the investigations of the propagation characteristics of the EM waves in plasma slabs. In this model, the EM waves propagating in both sub-wavelength plasma slabs and plasmas with thicker slabs can be studied simultaneously, which is superior to the model with geometrical optics approximation. The influence of EM wave frequencies and collisional frequencies on the amplitude of the transmitted EM waves is discussed in typical plasma profiles. The results will be significant for deep understanding of the propagation behaviors of the EM waves in sub-atmospheric pressure nonuniform plasma slabs, as well as the applications of the interactions between EM waves and the sub-atmospheric pressure plasmas.