After spinal cord transection (SCT) the interaction between motoneurons (MNs) and muscle is impaired, due to reorganization of the spinal network after a loss of supraspinal inputs. Rats subjected to SCT, treated with intraspinal injection of a AAV-BDNF (brain-derived neurotrophic factor) construct, partially regained the ability to walk. The central effects of this treatment have been identified, but its impact at the neuromuscular junction (NMJ) has not been characterized. Here, we compared the ability of NMJ pre- and postsynaptic machinery in the ankle extensor (Sol) and flexor (TA) muscles to respond to intraspinal AAV-BDNF after SCT. The gene expression of cholinergic molecules (VAChT, ChAT, AChE, nAChR, mAChR) was investigated in tracer-identified, microdissected MN perikarya, and in muscle fibers with the use of qPCR. In the NMJs, a distribution of VAChT, nAChR and Schwann cells was studied by immunofluorescence, and of synaptic vesicles and membrane active zones by electron microscopy. We showed partial protection of the Sol NMJs from disintegration, and upregulation of the VAChT and AChE transcripts in the Sol, but not the TA MNs after spinal enrichment with BDNF. We propose that the observed discrepancy in response to BDNF treatment is an effect of difference in the TrkB expression setting BDNF responsiveness, and of BDNF demands in Sol and TA muscles.