Changes in intracellular calcium concentration ([Ca2+]i) as well as in the phosphorylation state of proteins have been implicated in keratinocyte wound healing revealed in scratch assays. Scratching confluent HaCaT monolayers decreased the number of cells displaying repetitive Ca2+ oscillations as well as the frequency of their Ca2+-transients in cells close to the wounded area and initiated migration of the cells into the wound bed. In contrast, calyculin-A (CLA) and okadaic acid (OA), known cell permeable inhibitors of protein phosphatase-1 and 2A, increased the level of resting [Ca2+]i and suppressed cell migration and wound healing of HaCaT cells. Furthermore, neither CLA nor OA influenced how scratching affected Ca2+ oscillations. It is assumed that changes in and alterations of the phosphorylation level of Ca2+-transport and contractile proteins upon phosphatase inhibition mediates cell migration and wound healing.