Hackers on the Internet usually send attacking packets using compromised hosts, called stepping-stones, in order to avoid being detected and caught. With stepping-stone attacks, an intruder remotely logins these stepping-stones using programs like SSH or telnet, uses a chain of Internet hosts as relay machines, and then sends the attacking packets. A great number of detection approaches have been developed for stepping-stone intrusion (SSI) in the literature. Many of these existing detection methods worked effectively only when session manipulation by intruders is not present. When the session is manipulated by attackers, there are few known effective detection methods for SSI. It is important to know whether a detection algorithm for SSI is resistant on session manipulation by attackers. For session manipulation with chaff perturbation, software tools such as Scapy can be used to inject meaningless packets into a data stream. However, to the best of our knowledge, there are no existing effective tools or efficient algorithms to produce time-jittered network traffic that can be used to test whether an SSI detection method is resistant on intruders’ time-jittering manipulation. In this paper, we propose a framework to test resistency of detection algorithms for SSI on time-jittering manipulation. Our proposed framework can be used to test whether an existing or new SSI detection method is resistant on session manipulation by intruders with time-jittering.