2017
DOI: 10.12783/dtcse/aita2017/16006
|View full text |Cite
|
Sign up to set email alerts
|

Analysis of TCM Data Based on Partial Least Squares within Random Forest

Abstract: Abstract. Partial Least Square (PLS) seems hard to adapt to the characteristics of the nonlinear data due to its own linear feature. However, Random Forest Algorithm(RFA), which is assembled by several classifiers, is adaptive and suitable to nonlinear data. Based on this, a new method fusing RF into PLS is proposed, which build Random Forest through the principal components and the dependent variable extracted from PLS, and use the residual information to build Random Forest recursively until accuracy conditi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 3 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?