Analysis of terpenoid biosynthesis pathways in German chamomile (Matricaria recutita) and Roman chamomile (Chamaemelum nobile) based on co-expression networks
“…A schematic representation of the DEGs and annotated genes in the biosynthetic pathways for these compounds is shown in Fig. 4 [28]. Terpenoid biosynthesis utilizes isoprenoid precursors from terpenoid backbone biosynthesis (MVA and MEP pathways).…”
Section: Identification Of Degs and Further Analysis Of The Terpenoidmentioning
Background: Matricaria recutita (German chamomile) and Chamaemelum nobile (Roman chamomile) belong to the botanical family Asteraceae. These two herbs are not only morphologically distinguishable, but their secondary metabolitesespecially the essential oils present in flowers are also different, especially the terpenoids. The aim of this project was to preliminarily identify regulatory mechanisms in the terpenoid biosynthetic pathways that differ between German and Roman chamomile by performing comparative transcriptomic and metabolomic analyses.
Results:We determined the content of essential oils in disk florets and ray florets in these two chamomile species, and found that the terpenoid content in flowers of German chamomile is greater than that of Roman chamomile. In addition, a comparative RNA-seq analysis of German and Roman chamomile showed that 54% of genes shared > 75% sequence identity between the two species. In particular, more highly expressed DEGs (differentially expressed genes) and TF (transcription factor) genes, different regulation of CYPs (cytochrome P450 enzymes), and rapid evolution of downstream genes in the terpenoid biosynthetic pathway of German chamomile could be the main reasons to explain the differences in the types and levels of terpenoid compounds in these two species. In addition, a phylogenetic tree constructed from single copy genes showed that German chamomile and Roman chamomile are closely related to Chrysanthemum nankingense.
Conclusion:This work provides the first insights into terpenoid biosynthesis in two species of chamomile. The candidate unigenes related to terpenoid biosynthesis will be important in molecular breeding approaches to modulate the essential oil composition of Matricaria recutita and Chamaemelum nobile.
“…A schematic representation of the DEGs and annotated genes in the biosynthetic pathways for these compounds is shown in Fig. 4 [28]. Terpenoid biosynthesis utilizes isoprenoid precursors from terpenoid backbone biosynthesis (MVA and MEP pathways).…”
Section: Identification Of Degs and Further Analysis Of The Terpenoidmentioning
Background: Matricaria recutita (German chamomile) and Chamaemelum nobile (Roman chamomile) belong to the botanical family Asteraceae. These two herbs are not only morphologically distinguishable, but their secondary metabolitesespecially the essential oils present in flowers are also different, especially the terpenoids. The aim of this project was to preliminarily identify regulatory mechanisms in the terpenoid biosynthetic pathways that differ between German and Roman chamomile by performing comparative transcriptomic and metabolomic analyses.
Results:We determined the content of essential oils in disk florets and ray florets in these two chamomile species, and found that the terpenoid content in flowers of German chamomile is greater than that of Roman chamomile. In addition, a comparative RNA-seq analysis of German and Roman chamomile showed that 54% of genes shared > 75% sequence identity between the two species. In particular, more highly expressed DEGs (differentially expressed genes) and TF (transcription factor) genes, different regulation of CYPs (cytochrome P450 enzymes), and rapid evolution of downstream genes in the terpenoid biosynthetic pathway of German chamomile could be the main reasons to explain the differences in the types and levels of terpenoid compounds in these two species. In addition, a phylogenetic tree constructed from single copy genes showed that German chamomile and Roman chamomile are closely related to Chrysanthemum nankingense.
Conclusion:This work provides the first insights into terpenoid biosynthesis in two species of chamomile. The candidate unigenes related to terpenoid biosynthesis will be important in molecular breeding approaches to modulate the essential oil composition of Matricaria recutita and Chamaemelum nobile.
“…The main volatile compounds in those chamomile tea infusions were aldehydes (34.87%) and terpenoids (30.92%; Figure 6 A). A previous study that also used GC-MS found differing components of main volatile compounds in fresh German versus Roman chamomile teas; the former’s major compounds were sesquiterpenoids and monoterpenoids, while the latter’s were esters [ 26 ]. In our study, it was obvious that the components of the main volatile compounds are different between the flower’s head and the brewed tea in chamomile.…”
Section: Discussionmentioning
confidence: 99%
“…In C. morifolium ‘Boju’, the main volatiles are eucalyptol, fifolone, chrysanthenone, and cis -chrysanthenol acetate, among others [ 25 ]. In various types of chamomiles, although the main compounds identified are monoterpenoids, sesquiterpenoids, and esters [ 26 ], the composition and content of these volatiles are quite different from those in chrysanthemum.…”
Volatile composition is an important feature that determines flavor, which actively affects the overall evaluation of chrysanthemum tea. In this study, HS-GC-IMS (headspace-gas chromatography-ion mobility spectrometry) was performed to characterize the volatile profiles of different chrysanthemum tea subtypes. Forty-seven volatiles of diverse chemical nature were identified and quantified. Partial least squares discriminant analysis (PLS-DA) revealed that four chrysanthemum teas were distinct from each other based on their volatile compounds. Furthermore, this work provides reference methods for detecting novel volatile organic compounds in chrysanthemum tea plants and products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.