Following the eruption of the Taal Volcano in January 2020 and its continuous signs of unrest in the preceding years, this study delves into the investigation of sediment transport in the Pasig River, Philippines. The historical data of total suspended solids (TSS) and arsenic indicated a notable increase starting from the year 2020. The field measurements were conducted in February and March of 2022, two years after the eruption. Due to the observed homogeneity in the river’s mixing, a refined 1D sediment transport model was developed. In this study, HEC-RAS modeling software was employed. The calibration process using the Laursen transport function yielded an impressive R2 value of 0.9989 for the post-eruption model. This predictive accuracy underscores the robustness of the developed model. The study’s scope was further expanded by creating a model for February 2020, incorporating water quality data gathered by the Pasig River Coordinating and Management Office. The model simulation results showed peak TSS values of 120.63 mg/L and 225.15 mg/L in February 2022 and February 2020, respectively. The results of the study highlight the probable impact of geological events on sediment dynamics within the Pasig River, which could help manage and sustain ongoing river improvements.