In this paper anisotropic mechanical behavior of AA2024 aluminum and Ti6Al4V titanium alloys were studied using three different approaches: unified, multi-mechanism and polycrystalline. The theoretical formulations of studied elastoplastic models are first described. Thereafter, some numerical results concerning the simulation of a uniaxial tension test applied to thin metallic sheets are presented. Comparison between experimental results (taken from the literature) and numerical simulations shows that the multi-mechanism and polycrystalline models describe slightly better the anisotropy when considering all the directions. Finally, numerical simulations of a deep drawing test of AA2024 aluminum thin sheets will be analyzed.