Environmental factors in particular temperature, humidity, and atmosphere of packaging can control the postharvest physiology and variations in the chemical composition of horticultural crops during storage. Most fruits and vegetables release ethylene, as one of the simplest phyto-hormones, after harvest. Ethylene initiates ripening, produces softening and degradation of chlorophylls, and ultimately causing deterioration of fresh commodities. There are different methods to reduce ethylene production or inhibit its action to retain fruit and vegetable quality and extend their shelf life. Therefore, ethylene action can be limited at the receptor level (for example 1-MCP and Selenium), or through an effective elimination of released ethylene in the atmosphere. Among the emerging technologies, incorporation of nanoparticles into polymer matrix plays a major role in reducing the permeability of gases as well as absorption of ethylene. Accordingly, the present article reviews the characteristics, application types and effectiveness of ethylene control strategies for perishable commodities and their future aspects.