Several lines of evidence, including familial aggregation, suggest that allelic variation contributes to risk of diabetic nephropathy. To assess the evidence for specific susceptibility genes, we used the transmission/disequilibrium test (TDT) to analyze 115 candidate genes for linkage and association with diabetic nephropathy. A comprehensive survey of this sort has not been undertaken before. Single nucleotide polymorphisms and simple tandem repeat polymorphisms located within 10 kb of the candidate genes were genotyped in a total of 72 type 1 diabetic families of European descent. All families had at least one offspring with diabetes and end-stage renal disease or proteinuria. As a consequence of the large number of statistical tests and modest P values, findings for some genes may be false-positives. Furthermore, the small sample size resulted in limited power, so the effects of some tested genes may not be detectable, even if they contribute to susceptibility. Nevertheless, nominally significant TDT results (P < 0.05) were obtained with polymorphisms in 20 genes, including 12 that have not been studied previously: aquaporin 1; B-cell leukemia/lymphoma 2 (bcl-2) protooncogene; catalase; glutathione peroxidase 1; IGF1; laminin alpha 4; laminin, gamma 1; SMAD, mothers against DPP homolog 3; transforming growth factor, beta receptor II; transforming growth factor, beta receptor III; tissue inhibitor of metalloproteinase 3; and upstream transcription factor 1. In addition, our results provide modest support for a number of candidate genes previously studied by others. Diabetes 54:3305-3318, 2005 D iabetic nephropathy is the most serious longterm complication of diabetes, accounting for ϳ40% of new cases of end-stage renal disease (ESRD) in the U.S. (1). Two lines of evidence suggest a strong genetic component in susceptibility to diabetic kidney disease. 1) Epidemiological studies indicate that the prevalence of diabetic nephropathy increases during the first 15-20 years after onset of diabetes and then reaches a plateau, suggesting that only a subset of patients is susceptible to the development of kidney disease (2). 2) Family studies show clustering of diabetic nephropathy in both type 1 and type 2 diabetes; diabetic siblings of probands with diabetic nephropathy have a significantly greater risk for developing kidney complications than diabetic siblings of probands without diabetic nephropathy (3-6). In addition, segregation analyses of diabetic nephropathy in both Caucasians and Pima Indians with type 2 diabetes provide evidence for the presence of a major locus, with a possible role for several minor loci (7,8).Numerous metabolic pathways and associated groups of genes have been proposed as candidates to play a role in the genetic susceptibility to diabetic nephropathy (9 -12). Before onset of overt proteinuria, functional changes are observed in the kidney (altered glomerular filtration rates and increasing albumin excretion rates), which are thought to result from the underlying pathological changes that...