Packaging materials, such as cardboard, must endure vigorous loads during handling and transport, which could lead to damage to the packaged goods. To ensure that the transported goods reach the consumer safely, a profound knowledge of the behavior of packaging materials under impact loads is required. This study experimentally investigated the behavior of two different cardboard materials under impact loads. Different kinetic energy levels were obtained using a specially developed test rig. First, the resulting damage of the specimens was qualitatively characterized based on digital analysis. Second, the damage was quantitatively analyzed using the imprint diameter after impact as the characteristic parameter. It was found that three different damage phenomena occurred on both investigated materials: imprint, cracking, and breakthrough. Different imprint diameters were detected with increasing kinetic energy of the impactor. The impact load resistance of the material with the higher grammage was higher than that of the material with the lower grammage.