Using agricultural waste biomass pyrolysis to produce energy sources and biochar may support local economies in rural areas and enhance sustainability in the agricultural sector, reducing dependence on traditional energy sources and fertilisers. To obtain liquid and gaseous forms of biomass fuel, wheat straw pellets were pyrolysed in a screw reactor at temperatures of 300, 400, 500, 600, and 700 °C. An analysis was conducted to assess the influence of process temperature on the physicochemical composition of the raw material and the resulting biochar, pyrolysis liquid, and synthesis gas. The presence of potentially harmful substances in the biochar, whose addition to soil can improve soil properties, was assessed by quantitatively determining polycyclic aromatic hydrocarbons (PAHs). Similar tests were carried out for pyrolysis fluid. The assessments were based on the standards for the most dangerous PAHs: fluorene, anthracene, fluoranthene, benzo[b]fluorine, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene. The results indicated that the total content of polycyclic aromatic hydrocarbons in the biochar ranged from 346.81 µg·kg−1 at 300 °C to 1660.87 µg·kg−1 (700 °C). In the pyrolytic fluid, the PAH content ranged from 58,240.7 µg·kg−1 (300 °C) to 101,889.0 µg·kg−1 (600 °C). It was found that the increase in PAH content in both the biochar and the liquid progressed with increasing pyrolysis temperature. After finding a correlation between the increase in the PAH content in biochar and the increase in the content of high-energy gases in the synthesis gas, it was concluded that it is difficult to reconcile the production of PAH-free biochar in the pyrolysis of biomass with obtaining high-energy gas and pyrolysis oil.