In order to explore a better cooling performance of transition piece, a numerical simulation is performed in this study. Advanced gas turbines are designed to operate at increasingly higher inlet temperatures to enhance efficiency and specific power output. This development in the operating temperature is enabled by advances in hightemperature resistant materials and by the development of effective cooling methods that lower the temperature of all surfaces that come in contact with the hot gases. Thus, there is a need for new cooling techniques or enhancing the current techniques available. The current study is a numerical simulation of film cooling in a double chamber model, which could simulate the Transition Piece's (TP) structure and performance. The adiabatic wall temperature and flow cooling effectiveness for the coolant injection angles (seven orientations, 90°, 75°, 60°, 45°, 30°, 15° and 0º) were investigated numerically. Fluent, a commercial CFD software, is extensively used in the current study for numerical simulations.