The current study aims to improve the efficiency of automatic identification of pavement distress and improve the status quo of difficult identification and detection of pavement distress. First, the identification method of pavement distress and the types of pavement distress are analysed. Then, the design concept of deep learning in pavement distress recognition is described. Finally, the mask region-based convolutional neural network (Mask R-CNN) model is designed and applied in the recognition of road crack distress. The results show that in the evaluation of the model's comprehensive recognition performance, the highest accuracy is 99%, and the lowest accuracy is 95% after the test and evaluation of the designed model in different datasets. In the evaluation of different crack identification and detection methods, the highest accuracy of transverse crack detection is 98% and the lowest accuracy is 95%. In longitudinal crack detection, the highest accuracy is 98% and the lowest accuracy is 92%. In mesh crack detection, the highest accuracy is 98% and the lowest accuracy is 92%. This work not only provides an in-depth reference for the application of deep CNNs in pavement distress recognition but also promotes the improvement of road traffic conditions, thus contributing to the progression of smart cities in the future.
This article is part of the theme issue 'Artificial intelligence in failure analysis of transportation infrastructure and materials'.