Gene expression analysis by microarray assay revealed that when exposed to stress, Entamoeba histolytica exhibits a specific heat shock response, together with a dramatic overall reduction in gene transcription as well as differential allelic expression of key genes participating in virulence, such as the galactose/N-acetylgalactosamine (Gal/GalNAc) lectin.Amoebiasis is a disease caused by the enteric protozoan parasite Entamoeba histolytica. Following invasion of human tissue by E. histolytica, the two major clinical manifestations are hemorrhagic colitis and liver abscesses (18). For infection to succeed, invading trophozoites must produce an adaptive response that ensures their protection against the host response and survival. Hence, E. histolytica proteins whose production is triggered or modulated by environmental stress are of great interest, since characterization of these species should help us understand the mechanisms which sustain pathogenesis and could lead to new treatments for amoebiasis.Microbial pathogens have evolved a number of strategies for protecting themselves from their hosts. One of these is the so-called heat shock response, which is elicited by a sudden increase in ambient temperature (13) and induces the synthesis of a limited set of proteins (called heat shock proteins [HSPs] or molecular chaperones). Homologues of known HSPs have been identified and partially characterized in E. histolytica (1,11). With the aim of determining gene expression changes during E. histolytica's adaptive response during infection, we developed an oligonucleotidebased microarray with transcript information randomly obtained from a cultured virulent strain of the pathogen. Array analysis revealed that gene transcription in E. histolytica exposed to heat shock is dramatically reduced, since 471 of 1,131 unique genes were down regulated, whereas specific HSP-encoding genes were up regulated. In conjunction with real-time PCR results, these genetic information data reveal for the first time a very interesting differential allelic expression of key genes participating in virulence, such as the immunodominant antigen Gal/GalNAc lectin, certain cysteine proteinases, and the so-called 20-kDa antigen.The aims of this study were (i) to establish a highly discriminating method for monitoring gene expression changes in E. histolytica and (ii) to determine the mRNA expression profile of E. histolytica cells growing in a drastically modified environment. We decided to construct an oligonucleotide-based microarray, using information obtained directly from sequence analysis of E. histolytica transcripts, a strategy that is generally thought to overcome problems due to gene redundancy and the presence of introns. A cDNA library of the virulent E. histolytica strain HM-1:IMSS and a liver-specific cDNA subtraction library were prepared and sequenced. The bioinformatic analysis of sequenced clones enabled us to define 1,300 bona fide transcripts, all from parasites growing in vitro and enriched with randomly chosen transcrip...