Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Numerous studies address the estimation of energy consumption at intermodal terminals, with a primary focus on existing facilities. However, a significant research gap lies in the lack of reliable methods and tools for the ex ante estimation of energy consumption in transshipment systems. Such tools are essential for assessing the energy demand and intensity of intermodal terminals during the design phase. This gap presents a challenge for intermodal terminal designers, power grid operators, and other stakeholders, particularly in an era of growing energy needs. The authors of this paper identified this issue in the context of a real business case while planning potential intermodal terminal locations along new railway lines. The need became apparent when power grid designers requested energy consumption forecasts for the proposed terminals, highlighting the necessity to formulate and mathematically solve this problem. To address this challenge, a three-stage model was developed based on a pre-designed intermodal terminal. Stage I focused on establishing the fundamental assumptions for intermodal terminal operations. Key parameters influencing energy intensity were identified, such as the size of the transshipment yard, the types of loading operations, the number of containers handled, and the selection of handling equipment. These parameters formed the foundation for further analysis and modeling. Stage II focused on determining the optimal number of machines required to handle a given throughput. This included determining the specific parameters of the equipment, such as speed, span, and efficiency coefficients, as well as ensuring compliance with installation constraints dictated by the terminal layout. Stage III focused on estimating the energy consumption of both individual handling cycles and the total consumption of all handling equipment installed at the terminal. This required obtaining detailed information about the operational parameters of the handling equipment, which directly influence energy consumption. Using these parameters and the equations outlined in Stage III, the energy consumption for a single loading cycle was calculated for each type of handling equipment. Based on the total number of loading operations and model constraints, the total energy consumption of the terminal was estimated for various workload scenarios. In this phase of the study, numerous test calculations were performed. The analysis of testing parameters and the specified terminal layout revealed that energy consumption per cycle varies by equipment type: rail-mounted gantry cranes consume between 5.23 and 8.62 kWh, rubber-tired gantry cranes consume between 3.86 and 7.5 kWh, and automated guided vehicles consume approximately 0.8 kWh per cycle. All handling equipment, based on the adopted assumptions, will consume between 2200 and 13,470 kWh per day. Based on the testing results, a methodology was developed to aid intermodal terminal designers in estimating energy consumption based on variations in input parameters. The results closely align with those reported in the global literature, demonstrating that the methodology proposed in this article provides an accurate approach for estimating energy consumption at intermodal terminals. This method is also suited for use in ex ante cost–benefit analysis. A sensitivity analysis revealed the key variables and parameters that have the greatest impact on unit energy consumption per handling cycle. These included the transshipment yard’s dimensions, the mass of the equipment and cargo, and the nominal specifications of machinery engines. This research is significant for present-day economies heavily reliant on electricity, particularly during the energy transition phase, where efficient management of energy resources and infrastructure is essential. In the case of Poland, where this analysis was conducted, the energy transition involves not only switching handling equipment from combustion to electric power but, more importantly, decarbonizing the energy system. This study is the first to provide a methodology fully based on the design parameters of a planned intermodal terminal, validated with empirical data, enabling the calculation of future energy consumption directly from terminal technical designs. It also fills a critical research gap by enabling ex ante comparisons of energy intensity across transport chains, an area previously constrained by the lack of reliable tools for estimating energy consumption within transshipment terminals.
Numerous studies address the estimation of energy consumption at intermodal terminals, with a primary focus on existing facilities. However, a significant research gap lies in the lack of reliable methods and tools for the ex ante estimation of energy consumption in transshipment systems. Such tools are essential for assessing the energy demand and intensity of intermodal terminals during the design phase. This gap presents a challenge for intermodal terminal designers, power grid operators, and other stakeholders, particularly in an era of growing energy needs. The authors of this paper identified this issue in the context of a real business case while planning potential intermodal terminal locations along new railway lines. The need became apparent when power grid designers requested energy consumption forecasts for the proposed terminals, highlighting the necessity to formulate and mathematically solve this problem. To address this challenge, a three-stage model was developed based on a pre-designed intermodal terminal. Stage I focused on establishing the fundamental assumptions for intermodal terminal operations. Key parameters influencing energy intensity were identified, such as the size of the transshipment yard, the types of loading operations, the number of containers handled, and the selection of handling equipment. These parameters formed the foundation for further analysis and modeling. Stage II focused on determining the optimal number of machines required to handle a given throughput. This included determining the specific parameters of the equipment, such as speed, span, and efficiency coefficients, as well as ensuring compliance with installation constraints dictated by the terminal layout. Stage III focused on estimating the energy consumption of both individual handling cycles and the total consumption of all handling equipment installed at the terminal. This required obtaining detailed information about the operational parameters of the handling equipment, which directly influence energy consumption. Using these parameters and the equations outlined in Stage III, the energy consumption for a single loading cycle was calculated for each type of handling equipment. Based on the total number of loading operations and model constraints, the total energy consumption of the terminal was estimated for various workload scenarios. In this phase of the study, numerous test calculations were performed. The analysis of testing parameters and the specified terminal layout revealed that energy consumption per cycle varies by equipment type: rail-mounted gantry cranes consume between 5.23 and 8.62 kWh, rubber-tired gantry cranes consume between 3.86 and 7.5 kWh, and automated guided vehicles consume approximately 0.8 kWh per cycle. All handling equipment, based on the adopted assumptions, will consume between 2200 and 13,470 kWh per day. Based on the testing results, a methodology was developed to aid intermodal terminal designers in estimating energy consumption based on variations in input parameters. The results closely align with those reported in the global literature, demonstrating that the methodology proposed in this article provides an accurate approach for estimating energy consumption at intermodal terminals. This method is also suited for use in ex ante cost–benefit analysis. A sensitivity analysis revealed the key variables and parameters that have the greatest impact on unit energy consumption per handling cycle. These included the transshipment yard’s dimensions, the mass of the equipment and cargo, and the nominal specifications of machinery engines. This research is significant for present-day economies heavily reliant on electricity, particularly during the energy transition phase, where efficient management of energy resources and infrastructure is essential. In the case of Poland, where this analysis was conducted, the energy transition involves not only switching handling equipment from combustion to electric power but, more importantly, decarbonizing the energy system. This study is the first to provide a methodology fully based on the design parameters of a planned intermodal terminal, validated with empirical data, enabling the calculation of future energy consumption directly from terminal technical designs. It also fills a critical research gap by enabling ex ante comparisons of energy intensity across transport chains, an area previously constrained by the lack of reliable tools for estimating energy consumption within transshipment terminals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.