In the surface mining of mineral deposits, land resources suitable for agricultural purposes are inappropriately spent in large volumes. When mining deep open pits, overburden rocks are mainly transported to the surface. The optimal solution for reducing the area of disturbed lands is the placement of overburden rocks in internal dumps in the open pit. This is especially suitable when mining a mineral deposit with several open pits where at least one of them is depleted. Therefore, it is important to assess the feasibility of building an internal dump, based on the stability parameters of its slopes and the safe distance for placing mining equipment within its boundaries, which was the focus of this research. Numerical modeling with Slide 5.0 software was used to determine the stability of the dump slope inside the open pit and the safe distance from the upper slope edge for placing mining equipment. This reflected the geomechanical situation occurring within the boundaries of the dump formed in the open-pit field with a high degree of reliability. It was determined that the maximum standard safety factor values of the open-pit slopes are within the limits when the overburden rocks border on the hard bedrock (Ks.s.f ≥ 1.2). Under the condition where the dump slope bordered on sedimentations represented by clays, loams, and sands with a strength of 2–3 on the Mohs scale, the safety factor decreased by 22%. It was determined that the minimum safe distance from the outer contour of the dragline base to the upper edge of a single-tier dump was 15.5 m with a safety factor of 1.21. The maximum safe distance values in the range of 73.5–93 m were concentrated within the boundaries of sections 5–9, with a safety factor from 1.18 to 1.28. When the dragline was located within the boundaries of section 7, the dump construction works should be conducted only if the dump exist for up to 3 years. Based on the identified parameters, on the example of using the ESH-11/70 walking dragline, a technological scheme of its operation was developed with the allocation of safe boundaries for its placement when forming an internal dump. The results obtained are useful for the development of projects for the reclamation of depleted open pits.