The problem of the effective control of a small spacecraft is very relevant for solving a number of target tasks. Such tasks include, for example, remote sensing of the Earth or the implementation of gravity-sensitive processes. Therefore, it is necessary to develop new technologies for controlling small spacecraft. These technologies must take into account a number of disturbing factors that have not been taken into account previously. Temperature shock is one such factor for small spacecraft with solar panels. Therefore, the goal of the work is to create a new technology for controlling a small spacecraft based on a mathematical model of the stressed/deformed state of a solar panel during a temperature shock. The main methods for solving the problem are mathematical methods for solving initial/boundary value problems, in particular, the initial/boundary value problem of the third kind. As a result, an approximate solution for the deformation of a solar panel during a temperature shock was obtained. This solution is more general than those obtained previously. In particular, it satisfies the symmetrical condition of the solar panel. This could not be achieved by the previous solutions. We also observe an improvement (as compared to the previous solutions) in the fulfillment of the boundary conditions for the whole duration of the temperature shock. Based on this, a new technology for controlling a small spacecraft was created and its effectiveness was demonstrated. Application of the developed technology will improve the performance of the target tasks such as remote sensing of the Earth or the implementation of gravity-sensitive processes.