This paper proposes an original route for modeling the time-dependent behavior of a plasma jet issued from a DC plasma-spraying torch operating with various kinds of gas mixtures. The hydrodynamic interactions between this jet and a liquid jet for suspension plasma-spraying or a classical particle injection for the deposition of coatings are studied. In a first step, the classical plasma spraying process was explored using the FLUENT CFD code. Zirconia particles, defined as Lagrangian particles, were injected in an Ar/H 2 flow and their positions, kinetic and thermal states were compared with experimental results. The trend and intensity of the values demonstrated a rather good agreement. In a second step, the suspension plasma spraying was investigated with the AQUILON CFD to simulate interactions between the plasma and aqueous jets. An Ar/H 2 plasma flow was simulated with the Large Eddy Scale turbulence model assumption, in which a liquid jet had been introduced. The behavior observed during the first stage of the interactions between the two fluids corresponded to expectations.